伺服系统的发展和应用常识

日期 : 2024-01-23 作者: 代理进出口

工艺要求

  1.   随着信息、通讯与自动化技术的发展,种类非常之多的自动控制装置逐渐进进了人们的日常生活。网络通讯技术不仅为人们提供了方便的通讯手段,实际上也为各式各样的电子裝置提供了简易可靠的通讯渠道,借助于新式的网络通讯技术与计算功能强大的数字信号处理器芯片(DSP),可以开展出多种具有基本智能的信息家电设备(smart information appliance),例如能够在一定程度上帮助清洁工作的机器人、可供娱乐的电子机械宠物等等。这些结合机械、电子、通讯、控制、信息技术融合装置的核心部分就是具有网络界面的伺服系统控制器(network servo controller)。伺服技术已广泛的应用于我们的日常生活,例如光碟机光学读取头的伺服控制、远控飞机的机翼控制、数字相机的自动对焦控制、具有影像追踪功能的网络摄像监控系统、汽车无人驾驶等等,伺服系统涉及范围涵盖广泛,多学科交叉色彩浓厚。

      伺服控制管理系统最初用于船舶的无人驾驶、火炮控制和指挥仪中,后来逐渐推广到很多领域,特别是自动车床、天线位置控制、导弹和飞船的制导等。

      ① 以小功率指令信号去控制大功率负载。火炮控制和船舵控制就是典型的例子。

      ② 在没有机械连接的情况下,由输入轴控制位于远处的输出轴,实现远距同步传动。

      伺服系统的发展经历了由液压到电气的过程。电气伺服系统根据所驱动的电机类型分为直流(DC)伺服系统和交流(AC)伺服系统。50年代,无刷电机和直流电机实现了产品化,并在计算机外围设备和机械设备上获得了广泛的应用。70年代则是直流伺服电机的应用最为广泛的时代。

      从70年代后期到80年代初期,随着微处理器技术、大功率高性能半导体功率器件技术和电机永磁材料制造工艺的发展及其性能价格比的日益提高,交流伺服技术—交流伺服电机和交流伺服控制管理系统慢慢的变成为主流产品。交流伺服驱动技术已成为工业领域实现自动化的基础技术之一,并将逐渐取代直流伺服系统。

      交流伺服系统按其采用的驱动电动机的类型来分,主要有两大类:永磁同步(SM型)电动机交流伺服系统和感应式异步(IM型)电动机交流伺服系统。其中,永磁同步电动机交流伺服系统在技术上已趋于完全成熟,具备了十分优良的低速性能,并可实现弱磁高速控制,拓宽了系统的调速范围,适应了高性能伺服驱动的要求。并且随着永磁材料性能的大幅度提高和价格的降低,其在工业生产自动化领域中的应用将越来越广泛,目前已成为交流伺服系统的主流。感应式异步电动机交流伺服系统由于感应式异步电动机结构坚固,制造容易,价格低廉,因而具有很好的发展前景,代表了将来伺服技术的方向。但由于该系统采用矢量变换控制,相对永磁同步电动机伺服系统来说控制比较复杂,而且电机低速运行时还存在着效率低,发热严重等有待克服的技术问题,目前并未得到普遍应用。

      系统的执行元件一般为普通三相鼠笼型异步电动机,功率变换器件通常采用智能功率模块IPM。为进一步提高系统的动态和静态性能,可采用位置和速度闭环控制。三相交流电流的跟随控制能有效地提高逆变器的电流响应速度,并且能限制暂态电流,从而有利于IPM的安全工作。速度环和位置环可使用单片机控制,以使控制策略获得更高的控制性能。电流调节器若为比例形式,三个交流电流环都用足够大的比例调节器进行控制,其比例系数应该在保证系统不产生振荡的前提下尽量选大些,使被控异步电动机三相交流电流的幅值、相位和频率紧随给定值快速变化,从而实现电压型逆变器的快速电流控制。电流用比例调节,具有结构简单、电流跟随性能好以及限制电动机起制动电流快速可靠等诸多优点。

      直流伺服驱动技术受电机本身缺陷的影响,其发展受到了限制。直流伺服电机存在机械结构复杂、维护工作量大等缺点,在运行过程中转子容易发热,影响了与其连接的其他机械设备的精度,难以应用到高速及大容量的场合,机械换向器则成为直流伺服驱动技术发展的瓶颈。

      交流伺服电机克服了直流伺服电机存在的电刷、换向器等机械部件所带来的各种缺点,特别是交流伺服电机的过负荷特性和低惯性更体现出交流伺服系统的优越性。所以交流伺服系统在工厂自动化(FA)等各个领域得到了广泛的应用。

      从伺服驱动产品当前的应用来看,直流伺服产品正逐渐减少,交流伺服产品则日渐增加,市场占有率逐步扩大。在实际应用中,精度更高、速度更快、使用更方便的交流伺服产品慢慢的变成了主流产品。

      从前面的讨论可以看出,数字化交流伺服系统的应用越来越广,用户对伺服驱动技术的要求越来越高。总的来说,伺服系统的发展趋势可以概括为以下几个方面:

      伺服技术将继续迅速地由DC伺服系统转向AC伺服系统。从目前国际市场的情况看,几乎所有的新产品都是AC伺服系统。在工业发达国家,AC伺服电机的市场占有率已经超过80%。在国内生产AC伺服电机的厂家也越来越多,正在逐步地超过生产DC伺服电机的厂家。可以预见,在不远的将来,除了在某些微型电机领域之外,AC伺服电机将完全取代DC伺服电机。

      采用新型高速微处理器和专用数字信号处理机(DSP)的伺服控制单元将全面代替以模拟电子器件为主的伺服控制单元,从而实现完全数字化的伺服系统。全数字化的实现,将原有的硬件伺服控制变成了软件伺服控制,从而使在伺服系统中应用现代控制理论的先进算法(如:最优控制、人工智能、模糊控制、神经元网络等)成为可能。

      目前,伺服控制系统的输出器件越来越多地采用开关频率很高的新型功率半导体器件,主要有大功率晶体管(GTR)、功率场效应管(MOSFET)和绝缘门极晶体管(IGBT)等。这些先进器件的应用显著地降低了伺服单元输出回路的功耗,提高了系统的响应速度,降低了运行噪声。尤其值得一提的是,最新型的伺服控制系统已经开始使用一种把控制电路功能和大功率电子开关器件集成在一起的新型模块,称为智能控制功率模块(Intelligent Power Modules,简称IPM)。这种器件将输入隔离、能耗制动、过温、过压、过流保护及故障诊断等功能全部集成于一个不大的模块之中。其输入逻辑电平与TTL信号完全兼容,与微处理器的输出可以直接接口。它的应用显著地简化了伺服单元的设计,并实现了伺服系统的小型化和微型化。

      新的伺服系统产品改变了将伺服系统划分为速度伺服单元与位置伺服单元两个模块的做法,代之以单一的、高度集成化、多功能的控制单元。同一个控制单元,只要通过软件设置系统参数,就可以改变其性能,既可以使用电机本身配置的传感器构成半闭环调节系统,又可以通过接口与外部的位置或速度或力矩传感器构成高精度的全闭环调节系统。高度的集成化还显著地缩小了整个控制系统的体积,使得伺服系统的安装与调试工作都得到了简化。

      智能化是当前一切工业控制设备的流行趋势,伺服驱动系统作为一种高级的工业控制装置当然也不例外。最新数字化的伺服控制单元通常都设计为智能型产品,它们的智能化特点表现在以下几个方面:首先他们都具有参数记忆功能,系统的所有运行参数都可以通过人机对话的方式由软件来设置,保存在伺服单元内部,通过通信接口,这些参数甚至可以在运行途中由上位计算机加以修改,应用起来十分方便;其次它们都具有故障自诊断与分析功能,无论什么时候,只要系统出现故障,就会将故障的类型以及可能引起故障的原因通过用户界面清楚地显示出来,这就简化了维修与调试的复杂性;除以上特点之外,有的伺服系统还具有参数自整定的功能。众所周知,闭环调节系统的参数整定是保证系统性能指标的重要环节,也是需要耗费较多时间与精力的工作。带有自整定功能的伺服单元可以通过几次试运行,自动将系统的参数整定出来,并自动实现其最优化。对于使用伺服单元的用户来说,这是新型伺服系统最具吸引力的特点之一。

      在国外,以工业局域网技术为基础的工厂自动化(Factory AutomaTIon 简称FA)工程技术在最近十年来得到了长足的发展,并显示出良好的发展势头。为适应这一发展趋势,最新的伺服系统都配置了标准的串行通信接口(如RS-232C或RS-422接口等)和专用的局域网接口。这些接口的设置,显著地增强了伺服单元与其它控制设备间的互联能力,从而与CNC系统间的连接也由此变得十分简单,只需要一根电缆或光缆,就可以将数台,甚至数十台伺服单元与上位计算机连接成为整个数控系统。也可以通过串行接口,与可编程控制器(PLC)的数控模块相连。

      综上所述,伺服系统将向两个方向发展。一个是满足一般工业应用要求,对性能指标要求不高的应用场合,追求低成本、少维护、使用简单等特点的驱动产品,如变频电机、变频器等。另一个就是代表着伺服系统发展水平的主导产品—伺服电机、伺服控制器,追求高性能、高速度、数字化、智能型、网络化的驱动控制,以满足用户较高的应用要求。关键字:伺服系统引用地址:伺服系统的发展和应用常识

      运动控制在实际的工业现场中随处可见,也常听到大家提到运动控制;哪什么叫运动控制?以及基本概念有哪些?下面我们为大家做简单的介绍 运动控制(MC)是自动化的一个分支,它使用通称为伺服机构的一些设备如液压泵,线性执行机或者是电机来控制机器的位置或速度。运动控制在机器人和数控机床的领域内的应用要比在专用机器中的应用更复杂,因为后者运动形式更简单,通常被称为通用运动控制(GMC)。运动控制被广泛应用在包装、印刷、纺织和装配工业中。 定位的基本概念:使指定对象按指定速度和轨迹运动到指定位置 运动控制需要有控制器(PLC)、驱动器、电机、机械等机械需要将位置和速度反馈给控制,形成一个闭环的控制;这样控制器就能知道机械的动态和位置信息

      的概念和组成 /

      近年来,伺服系统的发展始终以稳定性、响应性与精度为发展主轴,这也是用户在使用过程中最为看重的几大因素。在机床伺服系统、机器人控制系统、雷达天线控制系统等场合大都由直流伺服电机和直流伺服控制器来完成控制。在这些控制领域中,主要以负载的位置或角度等为控制对象的伺服控制系统 。随着变频器技术的高速发展,在伺服系统中交流变频传动因其功率因数高、反应速度快、精度高、适合在恶劣环境中使用等优点得到了愈来愈普遍的应用。本文提出一种基于高性能单片机MSP430F149、变频器、变频电机组成的数字式变频伺服系统,并将数字PID算法引入到此系统中,使系统获得了良好的系统静、动态性能。 1变频伺服系统的功能 为达到变频伺服系统的运行可靠、良好的

      设计 /

      在电机控制的变频伺服系统中,电流传感器的采样精度和实时性很大程度上决定了系统的动、静态性能。精确的电流检测是提高系统控制精度、稳定性和快速性的重要环节,也是实现高性能闭环控制系统的关键。同时,当电机发生堵转或负载过重时,系统通过电流 传感器 检测到线路上发生过流,可以驱动IPM模块实现关断保护功能。下图一是用于电机控制的变频伺服系统框图: 图一: 用于电机控制的变频伺服系统框图 电流传感器按照工作原理可以分为:霍尔电流传感器、电流互感器、磁阻式电流传感器、电阻式电流传感器、光纤电流传感器等。而在变频伺服系统中,常见的电流传感器主要有霍尔电流传感器、电流互感器及电阻式电流传感器。利用霍尔效应原理的霍尔电流传感器可直接将电流

      迈川伺服不仅具有低速大力矩输出、零速力矩保持、调速精度高等伺服系统的优良性能,还具有PLC功能,可连接手摇脉冲发生器实现微量调速进给及对刀功能,因此非常适合在强力龙门铣的进给轴上做单轴控制,并且慢慢的变成了一个非常成功的案例。 一、硬件设计 迈川MS伺服技术特性:内部PLC功能,控制器可自成系统工作;速度、位置控制精度高,调速范围达宽;过载能力强,最大转矩远高于电机额定转矩。低速大转矩输出,零速力矩保持;可编程I/O接点丰富;可通过操作面板监控电机运行的各种状态。 伺服控制器控制结构设计 机床的X、Y、Z、W、V轴分别由五台伺服控制器控制,由各自的电位器控制发出模拟电压控制各轴的进给速度。机床的手动脉冲发生器,通过轴选通信号分别接到五

      机器人本体开发的“五要素”:伺服系统、控制器、核心算法、精密减速器和应用集成技术,武汉都已成功具备。东湖“中国光谷”已经初步形成工业机器人产业集聚效应,在科研、制造及激光、电子、医疗、汽车等多个行业的机器人集成应用成效显著。 武汉高校云集,科研实力雄厚,华中科技大学在多维工业机器人(搬运、清洁、喷漆等)、外骨骼式康复医疗机器人等方面,武汉大学在电力专用机器人等方面,武汉理工大学、武汉工程大学、武汉智能装备工程研究院在工业机器人基础理论研究方面,取得了一批重要成果,多次获得国家科技进步奖和国家自然科学奖。在下游应用方面,拥有华工激光、中冶南方、团结激光等一批用户和机器人合作伙伴。 在产学研用结合方面,30余家单位结成“机器人

      1 引言     与其他电机相比,PMSM构成的交流伺服系统具有明显的优势,如效率高、低速性能好、转子惯量小等,因此研究PMSM构成的高性能驱动和伺服控制系统,具有重要的理论意义和实用价值。针对PMSM控制的工程实际,设计了一种基于DSP F2808的数字伺服控制系统,采用直流母线电压纹波补偿、遇限削弱积分PI控制算法、防振荡处理等控制策略,实现PMSM高性能伺服控制,给出了伺服控制系统相关原理、软硬件设计和实验结果。基于上述方法开发的控制装置具有良好的性能,已获得实际应用。 2 交流伺服控制系统的相关控制方法 2.1 PMSM转子磁场定向矢量控制     在d,q旋转坐标系下,转子磁场定向矢量控制的PMSM电压、磁链方程为:

      1引言 随着高新技术的应用与发展,对控制系统性能的要求慢慢的升高。在伺服系统控制器 的设计中,在系统参数变化以及外界扰动的干扰下的伺服控制系统的干扰抑制性能和鲁棒性能是非常重要的 。采用常规PID控制难以达到令人满意的控制效果。为了提高伺服控制系统的控制精度和鲁棒性,本文提出了基于干扰观测器的改进PID控制方法 。该方法能够很好地提高系统的跟踪精度,同时引入干扰观测器,可对系统的摩擦干扰进行很好地抑制,提高系统的鲁棒性。 2干扰观测器的设计原理 干扰观测器 的基本思想是,将外部力矩干扰及模型参数变化造成的实际对象与名义模型输出的差异等效到控制输入端,即观测出等效干扰。在控制中引入等效的补偿,实现对干扰完全控制。基本结构如图1所示:

      我公司运用目前欧美盛行的CAN总线技术和产品,为雷达伺服系统提供包括座车调平、天线方位、俯仰、折叠和极化等功能的全套的网络化控制解决方案。CAN 是Controller Area Network 的缩写,是ISO国际标准化的串行通信协议。CAN属于现场总线的范畴,它是一种有效支持分布式控制或实时控制的串行通信网络。较之目前许多RS-485基于R线构建的分布式控制系统而言, 基于CAN总线的分布式控制系统在以下方面具有明显的优越性:第一,网络各节点之间的数据通信实时性强;第二,缩短了开发周期;第三,已形成国际标准的现场总线;第四,最有前途的现场总线之一。

      有奖直播 是德科技 InfiniiMax4.0系列高带宽示波器探头新品发布

      MPS电机研究院 让电机更听话的秘密! 第一站:电机应用知识大考!跟帖赢好礼~

      ADI世健工业嘉年华——深度体验:ADI伺服电机控制方案

      Cadence 推出新版 Palladium Z2 应用,率先支持四态硬件仿真和混合信号建模技术加速 SoC 验证

      内容提要• 四态硬件仿真应用可加速需要 X 态传播的仿真任务• 实数建模应用可加速混合信号设计软件仿真• 动态功耗分析应用可将复杂 ...

      1946年,第一台计算机ENIAC诞生,冯诺伊曼据此提出了经典的冯诺伊曼架构,自此,计算机的存储与处理技术在八十年间得到不断演进,现代 ...

      Cooper™ 开发者平台为工业应用、AIoT、智能视频分析和前端 AI 计算应用提供高能效解决方案。美国加利福尼亚州圣克拉拉市,2024年1月10 ...

      “应用创新、打造新生态”,ICDIA 2024启航!各大研究机构认为全球半导体市场在2023年到达周期性低点后,今年将整体出现复苏的趋势。Gartn ...

      随着生活水平的提高,人们对电子产品的要求也慢慢变得高,很多电子产品都用上了显示屏,像家电、汽车、医疗等很多产品都配有显示屏,而且这些 ...

      NVIDIA Metropolis生态壮大 开发者工具下载量突破100万次

      【泰享实测之水哥秘笈】: 电源测试的人间烟火,深入浅出谈环路响应测试!

      意法半导体智能执行器 STSPIN 参考设计整合电机控制、传感器和边缘人工智能

      新方法可精准控制光纤内光学电路,有望帮助加密通信网络和超快量子计算研发

      Cadence 推出新版 Palladium Z2 应用,率先支持四态硬件仿真和混合信号建模技术加速 SoC 验证

      体积小、功耗低、安全性高,专用加密芯片ATSHA204 精彩专题,答题有好礼!

      艾睿电子直播:聚焦“TI FPD-Link III 汽车芯片组” ,汽车视频传输理想解决方案

      ADI有奖下载活动之19:ADI可编程逻辑控制器(PLC)解决方案(更新版)

      站点相关:嵌入式处理器嵌入式操作系统开发相关FPGA/DSP总线与接口数据处理消费电子工业电子汽车电子其他技术存储技术综合资讯论坛电子百科

  • 首页
  • 咨询电话
  • 返回顶部